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FOREWORD

A method is outlined in this document for estimating density variations
in the atmosphere. Wind data which have the characteristics of internal
gravity waves are basic to this method. A brief review of the gravity wave

_theory is also presented. The work was conducted by Northrop Corporation,
Huntsville, Alabama, for the National Aeronautics and Space Administration,
George C, Marshall Space Flight Center, Aero-Astrodynamics Laboratory, under
Contract NAS8-20082, Appendix A-l, Schedule Order 32. This work was under
the direction of the Space Environment Branch, with Mr. R. E. Smith as NASA/

MSFC Technical Coordinator.
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Section 1

INTRODUCTION

3
A significant portion (10~ seconds) of the total reentry time for the
space shuttle orbiter will be spent in traversing the altitude range between
60 km and 100 km. Densities at these altitudes are therefore of interest from

the standpoints of trajectory, control, and heating.

Static atmospheric models are known to be inadequate for predicting satel-
lite impact and the decay of satellite orbits (e.g., see Schilling (1968))*.
DeVries (1971) notes that these models assume static equilibrium conditions
which are inadequate for dealing with short-period atmospheric pertufbations.
Thus, these static models are certainly inadequate for estimating density

: . . . 3
variations which occur with periods on the order of 10~ seconds.

Density variations may be associated with a number of physical phenomena
including turbulence, auroral activity, atmospheric chemistry, atmospheric
heating, and "gravity waves". Wind-speed profiles are relatively plentiful
between 60 km and 100 km. These may be obtained by a number of methods, in-
cluding the radar tracking of chaff, optical tracking of the chemiluminescent
trails resulting from rocket releases, acoustical techniques, and the radar
tracking of the ionization trails of meteors. Many of these data show evidence
of "gravity waves'" or waves resulting from the effects of compressibility and

bouyancy.

Hines (1960) was the first to relate the salient features of meteor-trail
wind data (available between 80 km and 115 km) to internal gravity waves. In
summarizing features of these data, he notes that they are characterized by
roughly horizontal winds which exhibit strong variations over vertical distances
of a few kilometers. A more or less typical variation is seen to have: a

vertical scale of about 12 km; a horizontal scale which exceeds the vertical

* - E - - 4 - -
A complete reference on each author's work cited in this report is given in
Section VI.



scale by a factor of 20 or more; and a period of about 200 minutes. The wind
variations are generally seen to increase with height and a background wind

shear is frequently evident.

This report is concerned with obtaining an analytic expression which per-
mits the use of gravity wave wind-profiles in making estimates of the magnitude
of density variations between the altitudes of 60 km and 100 km. A review of

the gravity wave theory is also included.

Hines (1960) has made the primary contribution in this direction by
developing an analytical expression relating density variations to wind speed
variations for gravity waves. It is not clear, however, to what extent his
analytic expression is valid for an atmosphere without a constant mean tempera-

ture or having a background wind.

Pitteway and Hines (1965) have obtained analytic expressions for the linear
and exponential variation of the mean temperature with height by employing a
W. K. B. approximation. However, they did not obtain an analytic expression
which is suitable for the estimation of density variations from wind variations

in the presence of background wind shear.

Hines and Reddy (1967) have considered the effect of wind speed in their
analysis of the propagation of atmospheric gravity waves through regions of
wind shear. However, they have neglected an explicit background wind-shear
parameter in their formulation of the problem. The background wind shear is
introduced by dividing the atmosphere into layers, each possessing a constant
wind speed. As noted by Booker and Bretherton (1967) and by Hines (1968) this
approach leads to problems at '"critical layers' where the background wind speed
in the direction of horizontal wave propagation equals the horizontal phase
speed. Since this analysis fails to deal analytically with background wind-
shear, it cannot be adapted to the analytical estimation of density variations

when wind shear is present.

Bretherton (1966) and Booker and Bretherton (1967) have included the

effects of wind shear in their analyses. However, these analyses are based
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on the Bousinnesq equations which are only valid for gravity waves in a com-
pressible fluid when the vertical scale of the motion is small compared to the
atmospheric scale height (e.g., see Bretherton (1966), Dutton and Fichtl (1969)).
For the altitude range of interest here, the vertical scale of motion may be

on the same order as the scale height so that the results of these workers may

not be generally applicable to the problem treated in this report.

This report attempts to introduce wind shear and temperature gradients
into the gravity wave problem while retaining the simple formulation of Hines
(1960). This will be seen to impose certain restrictions upon the generality
of the results. These restrictions are considered in some detail and they are
not found to seriously inhibit the estimation of density variations from wind

data.

The report is organized into five sections. Section II is concerned with
the basic theory. Attention is also given to the justification of the assump-
tions which are used in establishing and specializing the basic equations.
Section III develops and justifies the expression for estimating the variations
in density associated with velocity variations in the presence of wind shear
and temperature gradients. Attention is also given to critical levels, tempera-
ture and wind profiles and stability. Section IV discusses the physical signi-
ficance of parameters and parameteric regimes. The use of the results of
Section III is also demonstrated for a particular sample of data. Section V
summarizes the principal results and conclusions. Section VI contains a list
of references to the work of each author cited in this report. An appendix is
also included which discusses the problem of estimating the background wind

speed and the mean temperature from available data.
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Section !1

THEORY

In this section the Navier-Stokes equations will be specialized to give a
simple analytical relation between density and velocity variations assiciated
with low-frequency gravity waves, for altitudes between 60 km and 100 km. How-
ever, before proceeding with this, the constraints imposed by the continuum
assumption will be investigated. This assumption is basic to the Navier-Stokes

equations,

Kinetic theory may be used to show that the continuum gas dynamics regime
exists provided that the Knudsen number, Kn’ satisfies the condition
-2
K <10 (1)
The Knudsen number for internal gravity waves is defined as the ratio of the
mean free path to the dominant vertical scale, or vertical wavelength, of the

motion. That is

K = i‘—z (2)
The mean free path, 2, as.given by the U. S. Standard Atmosphere (1962) is on
the order of 10—4m at 60 km and lO—lm at 100 km. Thus, from condition (1), it
follows that the Navier-Stokes equations may be applied between 60 km and 100 km
provided that they are used to describe vertical wavelengths greater than about
1 cm at 60 km and greater than about 10 m at 100 km. These limiting values are
small in comparison with the nominal vertical scale for internal gravity waves
of about 104m, which Hines suggests for altitudes between 80 km and 115 km.
Thus, the Navier-Stokes equations may be safely applied.

The important conclusion which results from condition (1) and equation
(2) is that the usefulness of the Navier-Stokes equations is limited by the
vertical wavelength of the motion and the molecular mean free path of the

atmosphere. Since the mean free path increases upward, then so must the
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limiting vertical wavelength associated with the motion. Physically, condition
(1) says that the wavelength of the motion must at least be of a certain magni-
tude or the ordered wave motion will be lost in the chaos of random molecular
interaction. Waves having a specified vertical wavelength may be considered
to propagate upward until condition (1) is violated. Above this limiting point

it should be impossible to detect ordered wave motion of the specified wavelength.

2.1 SPECIALIZATION OF THE BASIC EQUATIONS

In analyzing gravity wave phenomena between 60 km and 100 km, chemistry,
hydromagnetic effects, radiation heat transfer, and atmospheric turbulence
will be neglected, as is usual. Rotation or Coriolis effects and earth curva-
ture will also be neglected. Of these latter two effects, the neglect of rota-
tion appears to impose the most serious restriction. Tolstoy (1967) indicates
that a rotation-free formulation is only useful in the description of wave

phenomena having periods less than about 3 or 4 hours.

After the neglect of these effects, the basic equations are:
V@ (3)
(the momentum equations)

Dinp - _2 .3 4
¢ V.V (4)

(the continuity equation)
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(the energy equation)

P = ORT (6)

(the state equation)




>

These equations are in terms of the vector velocity, V, the pressure, P,
the density, p, the temperature, T, the kinematic viscosity, v, the specific
heat per unit mass (at constant volume), Cv’ the specific gas constant of air,

R, and the thermal conductivity, k. The notation D/Dt denotes the 'substantial"

or "material' derivative. This operator is defined by

o
lw

> >
+V .-V (7)

=7
rt
1l
o)
rt

Under certain conditions viscosity and thermal conductivity can be impor-
tant. The neglect of these effects should be carefully considered. A scale
analysis may be used to estimate the relative orders of magnitude of viscous

and thermal conduction terms in the basic equationms.

Two relations which are helpful in a scale analysis of equations (3) and

(5) are

- R
Yy =1+ C (8)
v
which is obtained from elementary thermodynamic considerations and
k = £ Cv p v (9)
from kinetic theory. The factor f in equation (9) may be given by
9
£=5 - 5/9) (10)

for non-polar gases of moderate complexity such as 02, NZ’ COZ’ and CH4 (e.g.,

see 0'Neal and Brokaw (1962)).

Equations (3) and (5) may be non-dimensionalized with respect to a typical
period, T, a typical horizontal wavelength, Ax’ and a typical vertical wave-
length, Az. Based on the characteristics of wind data at the stated altitudes,
it will also be presumed that Az < Ax. For this case comparison of the magni-

tudes of terms in equations (3) through (5) clearly shows that viscous and
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thermal conduction effects first become significant when it is no longer possible

to state that

<< 1 (11)

Hines (1960) gives lO4 seconds as the period of a typical gravity wave
-2 2
between 80 km and 115 km. The kinematic viscosity, v, varies from 10 2 m /sec
to 1 mz/sec between 60 km and 90 km. Thus between 80 and 90 km, condition (11)

gives

Ai >> 10% n? (12)

However, Hines indicates thatlxz ~ lO8 m2 so that inequality (12) is satisfied

and both viscosity and thermal conductivity may be neglected up to 90 km, at

least.

Scale analysis also demonstrates the importance of the grouping Ax/UOT
where UO is the background wind speed in the x, or horizontal, direction. This
grouping, sometimes called the "Strouhal number', indicates the relative impor-
tance of the time- versus the space-derivative in the operator defined by
equation (7). In subsequent work the Strouhal number will generally appear in

the form w/KXU0 where Kx is the horizontal wave number, Ile z 2n/Ax, and the

angular frequency w is given by w = 2n/t.

2.2 LINEARIZATION OF THE BASIC EQUATIONS

After neglect of terms dependent on viscosity and thermal conductivity,
equations (3) through (6) may be linearized to produce a set of perturbation
equations and a ground state equation. The thermodynamic parameters, P, p,

and T are assumed to have the following dependence upon x, y, z and t:

P= P (z) + p'(x, vy, z, t) (13)
p= oo (2) +0'(x, y, 2z, t) (14)
T: T (z) +T'(x, y, z, t) (15}
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The velocity components are similarly defined

u: U (z) +u'(x, y, 2z, t) (16)
v = VO(Z) + V'(X, Yy, 2, t) (17)
wi w'(x, vy, z, t) (18)

The coordinate system will be chosen so that the x and y axes describe
horizontal wave propagation, and the positive z direction corresponds to the
direction of waves which propagate vertically upward. Further, the coordinate

system will be oriented so that 3/3y = O.

The perturbation equations are obtained from the inviscid and isentropic
forms of equations (3) through (6). They are derived by the neglect of terms
containing the products of primed quantities. These equations are:

du 2
du' o _,

du' L "o e 3 [p')_
e T Y m v +Y = (Po) 0 (19)
(x-momentum equation)

dv
1 ]
AU - B ! (20)

v
ot + Uo ox dz

(y-momentum equation)

2 2 {dinp
] L \ L A
%"t—+u %"—+g p——)+3—%(%— +5—( dz°)2—=o (21)
0 dJX Do Y o Y o
(z-momentum equation)
d&np ' '
3 [p' 3 [p! 0 du ow
R B A —_— 4+ — — = 22
Bt(po)+ Uo ax <p0>+ dz v ax + oz 0 (22)

(continuity equation)

2-5



dinP
s [p s [p' o du’ '
8t(P0)+ Us 3% (Po tgr o VY Ty =0 (23)

(energy equation)

The parameter c2 is defined by

¢“ = —2 = yRT (24)
p o}
The ground state equation associated with these perturbation equations is

2% - -5 g (25)

Equations (19) through (23) comprise a set of five simultaneous equations

1

in the five variables u', v', w', p'/PO, and p'/po. The variable, v', is only

involved in equation (20); therefore, this equation may be dropped, leaving a
set of four equations. The component of background wind, Vo’ which is directed
across the wavefront, only occurs in the omitted equation so that it cannot

affect wave propagation characteristics.,

Following Hines (1960), a solution is now sought to the four remaining

perturbation equations of the form,
\J
e_ P __-3 ¥ exp[i(wt - Kxx - Kzz)] (20)

where KX and w are presumed to be positive, real constants and K, is a complex

constant. The parameters Q, P, X and Z are proportionality constants.

Substitution of equations (26) into equations (19), (21), (22), and (23)

results in the following matrix equation
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9 -i du /dz -K c2/y 0 0
o X

0 Q2 —GCZ/Y -igif 2 0
. (27)
_ _ ig(y-1)
Ky Y[% T2 { ol 0
" s dJLnT0 0 Q Q 0
X dz

The parameter { which appears in system (27) is the angular frequency of the
wave observed from a frame of reference moving with the background velocity, Uo'

Justification for this statement will be provided in a later section.
frequency Q is defined by

The

Q= w- Kon (28)

The parameter G represents a convenient grouping.
by

This grouping is defined

z 2 (29)

To obtain a non-trivial solution of system (27) the determinant of the
four-by-four matrix must equal zero.

Kz yields

Solving this determinant equation for

.1
Kz =1 2

gk

Eﬁ S+ w +--—35553]

yg , dana} a @ dz
c2 dz | - o2

2 2 1(95)%) 2| |2

Koo+ -7\~ |- 9@

+ X g 5 z (30)
Q
Several new parameters are introduced in equation (30). These are
d&nT
= 31)
¢ =84, (
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a frequency w, which is termed the acoustic cut-off frequency, where
w_ =z 1B (32)

and a frequency wg termed the Brunt-Vaisala frequency, where

1/2
- g (33)

g c

Equation (30) is seen to consist of an imaginary term and a term which is
either real, imaginary, or zero. The physical significance of these terms,
and of the frequencies W, and wg is more evident if equation (30) is special-
ized to the case in which there are no background winds or mean temperature
gradients. In this case

2 2 2
W (w - wa) KX(Qg -w’)

!
K, =i-"¢ + 5 (34)

Figure 2-1 is a graph obtained by equating the second term on the right in
equation (34) to zero. The curves in the w, Kx plane separate two regimes,
within which Kz has both a real and an imaginary part, from a regime in which

KZ is purely imaginary and only horizontal wave propagation is possible.

w EVANESCENT WAVES
Kz PURE TMAGINARY

,///////////////// R;'xit"::vas

Figure 2-1. WAVE REGIMES IN THE w - K PLANE FOR AN "ISOTHERMAL" ATMOSPHERE
LACKING BACKGROUND WINDS *
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The 1 ma/c term in equation (34) has significance in terms of the wave

kinetic energy, Ek’ which may be defined by
Y
. .. © 2 2
E C 5 [!u'l + |w'| ] (35)

Equation (25) for the ground state, together with equations (26) for u' and w',
then permits equation (35) to be reduced to the form

po(z ) 2

B =5 (X + z%) (36)

Thus, waves propagate with constant kinetic energy, but vary in amplitude, when
the imaginary part of Kz equals iwa/c for the gravity or acoustic cases, This
condition is only satisfied in a "windless' atmosphere having a constant mean

temperature.

A dispersion relation for either gravity or acoustic waves that includes

the effects of wind shear and temperature gradients is obtained by equating kz
to the real part of Kz in equation (30). The parameter kz is, of course, a
constant since Kz has been designated a complex constant in the formulation of

the problem. The resulting dispersion relation is

2 dz

94 - 522 [cz(Ki + kz) + wi + ¢ +(l - l)g ding

du \ 2
2 2 2 1 o
+ kzc wg + ¢ - 4 (dz ) =0 (37)

Further, it is convenient to define an amplification or attenuation factor,
Zz, which is the imaginary part of Kz and is also a constant by precondition.

That is,

(15_+ dzna) (38)
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According to equation (30), @, Qz, kz and the ratios Q:P:X:Z must be con-
stant for K to be a complex constant. This limits the range of parameters over
which equation (26) provides a valid model of gravity wave processes. This

limitation will be considered in more detail in subsection 3.2

From equation (26) variations in wind speed and density are seen to be

related by

@)

(o)

By using three of the equations in system (27) it is possible to solve
for P/X, Z/X, and Q/X. These three equations may be represented by the

matrix equation

2

c G , Z
! Ty B X 0
3 1g(y-1) P
c
(G - i Q
(G -1 ¢/g) 0 Q 3 Kx (40)
For Q/X, the application of Cramer's rule then gives
g e\ fr, e c? ama) e
K | 22 A RY: g 2g dz 2
ol . . (41)
X ] w2 ) ?
1+ =2 [1 48 _ S 1 dfne 1 [dRaw
2,2 2 2 k dz 2 dz
c k w w z 4k
N z a a Z

Equations (26), (37), and (41) will be used to develop an expression
relating density and velocity variations for low frequency gravity waves in

the presence of a background wind shear.

Subsequently, the dispersion relation and equation (41) will be special-

ized by the neglect of terms having relatively small magnitudes. The result




of this process will be an asymptotic form of equation (39), which will apply

when the square of the frequency in the wind system, QZ, is small compared to

2
W .

g
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Section 111
AN EXPRESSION RELATING DENSITY AND VELOCITY VARIATIONS

At this point it is possible to combine equations (37), (39), and (41)
to produce an expression relating density variations to variations in the
horizontal component of the wind velocity. However, the resulting expression
would apply for both gravity and acoustic waves. Thus it would be more general,

and hence more complex, than is necessary.

By making careful approximations based upon the relative orders of magni-
tude of terms in equations (37) and (40), the form of the desired expression
can be simplified. The orders of magnitude of the terms in these equations
will be based here on the typical values for the time and space scales of a
gravity wave given by Hines (1960). With these values the square of the hori-

-8 =
zontal wave number Ki, is on the order of 10 m2 and the square of the vertical

wave number, ki, is on the order of 10‘6 m-z. The angular frequency, w, is

seen to be on the order of 10_3 sec~l. Also, for a speed of sound squared, cz,
on the order of 105 m2/sec2, the squares of the acoustic cut-off frequency, mi,

and the Brunt-Vaisala frequency, wz, must be on the order of 10_3 sec-z.

It therefore is clear that

6 < W < Wl << kK22 (42)
~ g a z
In addition to this, it is assumed that frequencies measured from a frame of

reference moving with the wind are low compared to the Brunt-Vaisala frequency.

That is,
Q7 << w (43)

This approximation is the "windy-atmosphere' equivalent to the inequality used
by Hines (1960) in his treatment of a quiescent atmosphere. Inequality (43)

2 2
reduces to the inequality of Hines, w << wg, in the absence of background

winds.
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A further approximation is based upon data of Rosenberg (1968) for alti-
tudes between 80 km and 100 km. These data suggest that values for the back-
ground wind, Uo’ are on the order of lO2 m/sec and values for the background
wind shear, dUo/dz, are on the order of 10_2 sec_l. For these orders of magni-

tude it follows that

Y _ ding 22
(2 1) 8 —qz << kzc (44)

3.1 AN ASYMPTOTIC LIMIT
Neglect of relatively small terms in the dispersion relation, equation
(38), gives the expression

ka 2 1 dU0 2
—_— = 4 - = | —
+ wg + ¢ A

1/2

dz (45)

The plus or minus sign on the right in this equation indicates that
QkZ/Kx may take on either positive or negative values. When Uo equals zero,
these signs simply indicate that the wave may propagate either upward or down-
ward for any given horizontal direction of propagation. (kz may be positive
or negative relative to Kx.) For the more general case, described by equation
(45), wind is significant. Here, the parameter Q may also be positive or
negative depending on whether or not the horizontal phase velocity, w/Kx,

exceeds the wind speed, Uo’ in the horizontal direction of wave propagation.

It is convenient for subsequent discussion to define a Richardson's

number, Ri, based on equation (45). Thus,
2
(> + ¢)
Ri = —& (46)

du 2

)

dz
When Ri < 1/4, the grouping QkZ/Kx must be imaginary. There are two possible
ways that this can occur. One possibility is that kz is imaginary and Q is

real. 1In this case equation (45) describes evanescent waves which characteris-

tically do not propagate in a vertical direction. (This conclusion may be
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justified further, for 92 << wé, by reviewing equation (30) and the discussion
following that equation.) The alternative, for an imaginary value of ukZ/KX,
is that kz be real and @ be imaginary. 1In this case, the amplitude of the
perturbation terms (equation (26)) vary in an c:ponential manner with time.
The fluid medium is thus said to be unstable under perturbation. It is also
possible for both Q and kz to be imaginary while the Richardson number satis-

fies the inequality, Ri > 1/4.

The "critical layers" of Bretherton (1966) and Booker and Bretherton (1967)
occur when Ri = 1/4., In this case the horizontal wind, Uo’ and the horizontal
component of the phase velocity, w/Kx, are in the same direction and are equal.
It follows from equation (45) that Ri = 1/4 corresponds to zero in the fre-
quency, {2, which is observed from a coordinate system moving with the wind.

The frequency § is defined by equation (28) in such a manner that it equals

zero when w/Kx = Uo' It has been noted by Booker and Bretherton (1967) and
Hines (1970) that these critical layers correspond to regions of the atmosphere
within which momentum is preferentially transferred between the internal gravity

waves and the background wind.

The neglect of relatively small terms in equation (41) gives an expression
for Q/X which is valid in the same asymptotic limit as equation (45). Combining

this asymptotic form for equation (41) with equation (45) gives

(w2 + ¢)l/2
=8 exp{i [%-t arctan(4Ri - l)—l/%] 47

O

g

The relation between density and velocity variations in an atmosphere
having wind shear and temperature gradients is determined by combining equations
(39) and (47). Thus,

dnT 1/2
o)

dz

_Ci =qu' (y-1) + -1/2

p CZ

é exp 1 + arctan (4Ri - 1) (48)

I
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Equation (48) is the principal result of this report. As the wind shear
and temperature gradient approach zero, the relation obtained by Hines (1960)

is approached. That is,

1/2

1 -
[P €' 1) a' (49)
o - c

o

At critical layers, where Ri = 1/4, equation (48) reduces to
1/2

' —
R G et Y NN (50)
OO = c

3.2 BACKGROUND WIND SPEED AND MEAN TEMPERATURE

According to equations (27) and (30), the parameters Q, 22 and kz and the
ratios Q:P:Z:X must be constant in order for Kz to be a complex constant. Thus,
equation (26) represents a valid gravity wave model only if one considers those
mean temperature and and background wind speed profiles which preserve the z-
independence of 22, kz and of the ratios Q:P:Z:X. This subsection is concerned
with demonstrating the conditions under which a set of linearly altitude-
dependent profiles can preserve the z-independence of Qz, kz and of the ratios

Q:P:Z2:X.

In summary it may be noted that

=z w - KXUO (51)
_ 1[yg , 2200
2z =2 [ 2 + 9z } (52)
c

and du 2 1/2
(e e st] oo 1())- ]

k =+ — + X B - (53)

c Q

where w and KX are assumed to be constant.
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Also, the application of Cramer's rule to system (40) provides expressions
for A, PA/X, QA/X, and ZA/X which may be used to demonstrate the z-independence

of the ratios Q:P:Z:X. These are:

A= ? - aled(k + 18 )(k +in - LYBy 4 4] (54)
z z z z CZ
ZAJX = 9K czl} +ip - L(Y—'l)—&] (55)
X Z A c2
PA/K = ¥K_[2° - (v-D)g/c” - ¢] (56)
QA/x=K[92—193(k +ig - B¢ 4 B (57)
X g z Tz T c2 ¢ c2

Inspection or substitution will demonstrate that the quantities on the

left in equations (51) through (57) are constant for the linear profiles.

du
o .
Uo(z) Uo(zo) + (E;_>Z (z - zo) (58)

dT0
TO(Z) TO(ZO) + —dz— (Z - Zo) (59)

z
o

provided that both of the auxiliary conditions

dSLnU0
dz (z - zo)
z

o

anTo
< 0.1 and iz . (z - zo) < 0.1 (60)

o

are satisfied. Conditions (60) are therefore the desired conditions under which
a set of linearly altitude-dependent profiles (equations (58) and (59)) preserve
the z-~independence of zz, kz and of the ratios Q:P:Z:X. Equations (26) represent
a valid gravity wave model for the background profiles (58) and (59) provided

that conditions (60) are satisfied.

Under conditions (60), equations (58) and (59) may be used together with

equation (48) and wind data to estimate density variations. Equations (58)
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and (59) may be of value in propagation analyses where (z - zo) may be con-
sidered to be the thickness of an atmospheric layer. In this case, conditions
(60) may be used to specify the thickness of a layer. Both of these conditions
must be satisfied on a layer-by-layer basis for a given set of ground state
profiles. 1In another sense, conditions (60) may be used to define a region
within which a particular density-variation estimate is valid., This is possible
for background wind and temperature profiles which are approximated in the

vielnity of z by a linear altitude dependence.

3.3 ATTENUATION OR AMPLIFICATION OF GRAVITY WAVES
When the real and imaginary parts of Kz are substituted into equation (26)
the resulting expression is of the form

2 z i(wt - Kx - k 2z)
] ' 1 '

The constant lz therefore describes the amplification or attenuation of the

perturbation quantities which appear in equation (61).
Expressing equation (38) in terms of the ground state profiles, T0 = To(z)
and Uo = Uo(z), which are discussed in the previous subsection, gives

au (z) -1

& o _
R T_(2) AP LN R (62)

X

1
Qz T2

The magnitude and sign of lz at the point z  may be established from equation

(62). Criteria for specifying the neighborhood of z within which lz is

practically constant are given in the previous subsection.

At a critical point Qz must be infinite in magnitude and must depend in
sign on the sign of dUo/dz. As mentioned in subsection 3.1 these critical
layers have been found to correspond to regions of the atmosphere within which
momentum is preferentially transferred between internal gravity waves and the
background wind. These layers are therefore regions within which the assump-

tions of this perturbation analysis break down.
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Section IV
THE PHYSICAL INTERPRETATION OF RESULTS

This section is intended to justify, and perhaps clarify, the physical
significance attached to certain parameters in this analysis. Interrelations
between parameters are also discussed. A Galilean transformation relating a
coordinate system moving with wind speed, Uo’ to a rest or laboratory system
is used to clarify the relationship between £ and w. Information is also
obtained from graphs in the 2/w - w/Kon plane, which are based on the asymp-
totic dispersion relation and the definition of 2. 1In addition to this, the
results of Section III are used in making an estimate of the magnitude of

density variations associated with particular sets of wind data.

4.1 THE PHYSICAL SIGNIFICANCE OF {2
In previous discussion, the parameter { has been interpreted as the
"frequency in a frame of reference moving with the wind speed Uo". This

statement can be justified by a simple Galilean transformation.

The space and time periodicity of gravity waves is described by the factor

i{wt - K x - kzz)
e X (63)

Suppose another coordinate system is defined which moves with the mean wind

velocity Uo(z), for any given z. The Galilean transformation that relates

the fixed and moving systems is, therefore,

x=x'+Ut'

(o]
z=2z' (64)
t=t'

where the primed coordinates locate positions and times with respect to the
moving system. Substitution into equation (63) from equation (28) followed
by use of equations (64) shows that

i(wt - K x - k 2z) i(pe' - Kxx' - kzz')
e x 2 =e (65)



Thus, the amplitude of the periodicity remains unchanged under transformation
and only the frequencies change. It is clear from equation (65) and transfor-
mation (64) that @ is the frequency of a gravity wave in a coordinate system

moving with the background wind velocity Uo'

4.2 A GRAPHICAL METHOD OF SHOWING PARAMETRIC RELATIONSHIPS

This subsection is devoted to developing a method for showing the con-
straints imposed by the asymptotic dispersion relation upon the parameters in
equation (28). These parametric constraints are best shown in the Q/w - w/KxU0

plane.

Equation (28), which defines 2, may be written in the form

= (66)

|
—
|

gl

which is conveniently plotted in the Q/w - w/Kon plane.

Furthermore, the dispersion relation for low frequency gravity waves in

an atmosphere with a constant mean temperature is given by

2
0k
z - 1
K o - [: - ARi] (67)
X g

where, for this "isothermal' case

Ri = —8— (68)

Since evanescent waves are of primary concern here, it will be presumed that
2 X .
kz > 0. Under this condition it is evident, from the fact that Ri is non-

negative, that
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o -

———

< 1 (69)

Conditions (69), which are derived from the dispersion relation (equation (67))
for constant mean temperature, define two limiting cases. Furthermore, it is
possible for conditions (69) to be written in forms which allow them to be

conveniently interpreted in terms of the Q/w - w/Kon plane. These forms are

QZ wg w -2
X_ o« (70)
z - U
w (kzuo KXO
and
2 -1
(1-9 9—-1+2——‘;_’—7+1 <0 (71)
w w KU
X 0

Reference to equations (67) and (68) will verify that condition (70) defines
the portions of the Q/w - w/Kon plane for which the wind-shear, an/az, is
non-zero. In addition, consideration of these same equations verifies that,
when ki is greater than zero, equation (71) defines portions of the

Qlw - w/KxUO plane for which low-frequency gravity waves are stable.

Figures 4-la and 4-1b are simply a graphical representation of the con-
straints imposed upon equation (66) by conditions (70) and (71). Thus,
stability and non-zero shear conditions derived from the dispersion equation
are used to qualify equation (66). Equation (66) is nothing more than the

parametric relationship associated with the Doppler effect.

The equality in equation (71) defines the boundary of the stable regime.
Similarly, the equality in equation (70) results in four hyperbolas in the
Qw - w/K U, plane which have the Q/w and w/K U axes as asymptotes. A
different set of hyperbolas is found for each value of (m /k u ) The region
between a particular set of hyperbolas and the axes corresponds to the region
within which wind shear, BUO/BZ, must be non-zero. The hyperbolas thus form

the boundary of a (wg/szo)2 dependent regime.
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The curves, in the Q/w - w/KxUO plane, associated with equation (66) are
two hyperbolas having the Q/w axis and the line, Q/w = 1, as asymptotes. The
hyperbolas lie in the portions of the Q/w - w/Kon plane corresponding to

Q/w > 1, w/KXUo < 0, and to Q/w < 1, w/Kon-l 0.

Two points on the curves defined by equation (66) should be noted. In
the absence of wind, points in the Q/w - w/Kon plane collapse to the point
at (R/w =1, w/KxU0 = »), Another important point corresponds to the critical

layer and has the coordinates, (Q/w = 0, w/KxUO = 1). It is interesting that

this latter point is "just stable". That is, ii satisfies the equality in
the stability condition, Q/w < 1 - 2 L; 5 + 1 . At no other point in these
KU
X o

figures does the locus of points given by equation (66) appear to approach the

boundary of the stability regime.

To improve comprehension of Figures 4-la and 4-~1b, the physical meaning
associated with different portions of the Q/w - w/Kon plane can be considered.
The portion of this plane for which m/KXUo > 0 corresponds to physical situa-
tions in which the horizontal component of the phase velocity and the wind are
in the same direction. In contrast, the half-plane for which w/Kon <0
corresponds to cases in which the wind opposes the horizontal component of the

phase velocity.

Similarly, the half of the Q/w - w/KXUo plane for which Q/w > 0 corresponds
to physical situations in which time sequences, which are measured both in the
wind coordinate system and in the rest coordinate system, exhibit the same
ordering. In contrast to this, points in the half plane for which Q/w < 0
have in common a physical situation in which the time-sequences measured from

the two coordinate systems are opposite in order.

The latter case, in which the time sequences are oppositely ordered, only
occurs when the wind is in the same direction as the horizontal component of
the phase velocity. 1In fact, it is restricted to values of w/KXU0 which lie
between unity and zero. A simple sketch illustrates that, when the wind speed

in the direction of horizontal propagation exceeds the phase velocity in that




direction, the time-sequence in the rest system will become exactly the
reverse of the time-sequence of measured events for the wind system. When
the specified wind speed is less than the horizontal phase velocity component,

the same time-ordering of events is measured in both systems.

Nominal values for the horizontal component of the phase velocity, from
Hines (1960), suggest that 10m/sec < m/Kx < 102m/sec at altitudes between 80
km and 100 km. Data of Rosenberg (1968) for the 80 km to 100 km region suggest
that mean wind speeds on the order of 102m/sec are not unusual. Thus, both
positive and negative values for Q/w may indeed occur for the 60 km to 100 km

altitude range.

When the wind opposes the horizontal phase-velocity component
(w/Kon < 0), the frequency measured in the rest system is always less than
that measured in the wind system. These two frequencies become equal as

w/KxUO approaches a large negative value.

An interesting conclusion results from the trends seen in Figure 4-1b.
This figure shows that when Uo is in the direction of horizontal wave propa-
gation, only the region in the vicinity of a critical point may simultaneously
exhibit a high wind speed, Uo; wind shear, an/az; and a short vertical wave-
length, A,- This suggests that "jet-like" motion in the atmosphere only
corresponds to a critical layer for gravity waves with the horizontal component
of phase velocity in the same direction as the jet and with relatively short

vertical wavelengths.

4.3 THE MAGNITUDE OF DENSITY VARIATIONS AT METEOR HEIGHTS
This subsection presents examples of how equation (48) may be used to
estimate magnitudes for p‘/pO from wind data. Equation (48) shows the magni-

tude of p'/po to be given by

. 1 denT 1/2
L) RS R i’} B (72)
m

2 g dz



As discussed in the Appendix, equation (72) probably provides the best
estimate of gravity wave density variations when applied to an ensemble average
such as that of Rosenberg (1968). By statistically analyzing 70 midlatitude
wind profiles between 90 and 150 km, Rosenberg shows that r.m.s. wind speeds
range from 45 m/sec to 70 m/sec. At 90 km the U. S. Standard Atmosphere (1962)
gives a value for the mean temperature of 180.65°K. The temperature gradient
at this altitude is 0.75 x 10—3°K/m so that the temperature gradient term in
equation (72) is on the order of plus 0.42 x 10_6 (sec/m)z. The speed of sound

is about 270 m/sec so that for these values equation (72) becomes,

g—' = (2.43 x 10“3)<u')m

[¢]
m

Using the r.m.s., values for (u')m, from Rosenberg (1968), shows that

— ~0.11 - 0.17

O |o

Thus |p'[ is about 10 to 20 percent of oy at around 90 km.




Section V
SUMMARY

This report gives a brief review of gfavity wave theory. A method is
also developed for determining the density variations from observed wind speed
profiles between 60 km and 100 km. The principal result is that the magnitude
of density variation is independent of the background wind speed and background
wind shear under the approximations outlined in Section III. However, this
magnitude may depend upon the ratio of the mean temperature, To’ to the mean

temperature gradient, BTO/Bz.

An analysis of the averaging techniques (see the Appendix) suggests that
unacceptably large altitude ranges are involved in determining the mean tempera-
ture or background wind speed from individual profiles of the form
£ = g(xo, z, to). Ensemble averaging thus appears to be the best method of
estimating these background or mean values. A representative set of wind speed
values have been obtained by Rosenberg (1968) by the statistical analysis of
70 midlatitude wind profiles between 90 km and 150 km suggest that gravity
wave density variations may be on the order of 10 to 20 percent of the local

mean density.

Future work should be directed toward processing wind profiles using the
methods developed here. Consideration should also be given to the effects of

reflection and ducting upon the perturbations induced by gravity waves.
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Appendix
ESTIMATION OF BACKGROUND WIND AND MEAN TEMPERATURE FROM DATA

For convenience, general wind and temperature profiles will be represented
in this appendix by a common parameter {. The following arguments are valid

for either type of data. Thus,

u(x, z, t)

T(x, z, t) = 8(x, z, 1) (A-1)

The theory developed in this report includes certain assumptions concerning
the form of £(x, z, t). That is,
ifwt - Kx x —(k 4+ if )z]
E(x, z, t) = £ (2) +E'(x_, 2, t ) e z z (A-2)

where £o(z) is the mean or background value.

Wind and temperature data obtained by any of the conventional means listed
in Section I have a common characteristic. These data are available for a
relatively large range of z values in comparison to a much more limited x and

t ranges. Parametrically this can be stated by requiring that
g = g(xo, z, to) (A-3)
for these data.

Given data of the sort characterized by equation (A-3), it is tempting to
try to define go(zo) by some sort of average over values of g(xo, z, to)

centered on z - Criteria are thus developed in this appendix under which

+ Az

4

VA
(o]
. | ~ -
<§(XO, z, t0)> = E [ E(Xo, z, tO)dz & EO(ZO) (A-4)
z

- Az
o



It is assumed here that the conditions presented in subsection 3.2 are valid.

If so then background or mean profiles of the form
dgo
Eo(z) = EO(ZO) + P . (z - ZO) (A-5)
o}

are consistent with the gravity wave model presented in this report.

Substitution from equations (A-2) and (A-5) into equation (A-4) followed

by integration gives

' (x , z , t )

<€(x,z,t) =g (z ) + °——5—2— (a + ib) (A-6)
o o>z oo (k2 + 22) .
z z

where

a = [kz cosh(lez)31n(kZAz) + lz 81nh(22Az)cos(szz)]

(A-7)

b = —[kz 51nh(lez)cos(szz) - Zz cosh(lez)51n(kZAz)]

Since
1/2

a+ib = [a® + b2] e (A-8)
where the phase angle, ¢, is given by

¢ = arctan b/a (A-9)

equation (A-6) may be written in the form

E'(x , z , t) 1/2
_ o> "0’ "o . 2 , .2 i

<é(x0, z, toi>z = EO(ZO) + ; ; 73 [Eln (szz) + sinh (KZA;J e
(kz + Zz) Az

(A-10)




If absolute values are considered, it follows immediately from equation
(A-10) that

<$(xo’ Zs toi>z = Eo(zo) (A-11)
provided that

2 2 1/2
1 . .
£ (xo, z s to)[51n (szz) + sinh (lez)]
1/2
£ (202 + 95 ae

A

0.1 (A-12)

Condition (A-12) will now be investigated in order to determine what sort

of Az is necessary so that equation (A-11l) is a valid approximation.

Consider wind data for an isothermal atmosphere, free of wind shear, which
has a scale height, H. For this case, lz ~ 1/2H and kz ~ 2r/H. Thus, for

u(xo, z, to), condition (A-12) becomes

1/2
2 Az 2 Az
' . r
u (xo, z s to)[51n 27 ﬁ—O + sinh (Eﬁ)] H

50U (z )Az
o o

A

0.1 (A-13)

If, as a worst case, u' is presumed to be on the order of UO one sees that
the absolute value of the left hand term in (A-13) is on the order of 0.1 pro-
vided that Az is on the order of 2H. Since Az ~ H, this implies that a suitable
mean value of Uo(zo) can only be obtained by averaging u(xo, z, to) over values
out to ZAZ on either side of z. An averaging interval of this size is unaccept-
able. If u'(xo, z s to) is known to be much less than Uo(zo) the averaging

interval may possibly be reduced to a more acceptable size.

Since atmospheric wind data may not generally exhibit the feature that
u'(xo, z s to) << Uo(zo), it would appear from the results of this appendix that
the approximation expressed by (A-11) is not a useful means of determining

Uo(zo) because of the unacceptably large altitude ranges which are required to



validate the approximation. Perhaps a more valid approach is that of Rosenberg
(1968) in which an ensemble average of u(xo, z, to) profiles is used to deter-
mine Uo(zo). The excursions about this mean may then be presumed to approximate
the magnitude of u'(xo, z , to). In essence, this involves replacing a con-

ventional average over a given altitude range by an ergodic hypothesis.
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